Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Thyroid ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38661522

ABSTRACT

Background: Monocarboxylate transporter 8 (MCT8) is the most specific thyroid hormone transporter identified to date, deficiency of which has been associated with severe intellectual and motor disability and abnormal serum thyroid function tests. However, it is presently unknown if MCT8, similar to other thyroid hormone transporters, also accepts additional substrates, and if disruption of their transport may contribute to the observed phenotype. Methods: In this study, we aimed to identify such substrates by applying liquid chromatography-mass spectrometry-based metabolome analysis in lysates of control and MCT8-overexpressing Xenopus oocytes. A subset of identified candidate substrates were validated by direct transport studies in transiently transfected COS-1 cells and human fibroblasts, which endogenously express MCT8. Moreover, transport characteristics were determined, including transport saturation and cis-inhibition potency of thyroid hormone transport. Results: Metabolome analysis identified 21 m/z ratios, corresponding to 87 candidate metabolites, with a 2.0-times differential abundance in MCT8-injected oocytes compared with controls. These metabolites included 3,5-diiodotyrosine (DIT) and several amino acids, including glutamate and glutamine. In accordance, MCT8-expressing COS-1 cells had 2.2-times lower intracellular accumulation of [125I]-DIT compared with control cells. This effect was largely blocked in the presence of 3,3',5-triiodothyronine (T3) (IC50: 2.5 ± 1.5 µM) or thyroxine (T4) (IC50: 5.8 ± 1.3 µM). Conversely, increasing concentrations of DIT enhanced the accumulation of T3 and T4. The MCT8-specific inhibitor silychristin increased the intracellular accumulation of DIT in human fibroblasts. COS-1 cells expressing MCT8 also exhibited a 50% reduction in intracellular accumulation of [125I]-3-monoiodotyrosine (MIT). In contrast, COS-1 cells expressing MCT8 did not alter the intracellular accumulation of [3H]-glutamate or [3H]-glutamine. However, studies in human fibroblasts showed a 1.5-1.9 times higher glutamate uptake in control fibroblasts compared with fibroblasts derived from patients with MCT8 deficiency, which was not affected in the presence of silychristin. Conclusions: Taken together, our results suggest that the iodotyrosines DIT and MIT can be exported by MCT8. MIT and DIT interfere with MCT8-mediated transport of thyroid hormone in vitro and vice versa. Future studies should elucidate if MCT8, being highly expressed in thyroidal follicular cells, also transports iodotyrosines in vivo.

2.
J Clin Endocrinol Metab ; 109(1): e330-e335, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37450560

ABSTRACT

CONTEXT: Monocarboxylate transporter 8 (MCT8) deficiency is a rare neurodevelopmental and metabolic disorder, with daily care posing a heavy burden on caregivers. A comprehensive overview of these complex needs and daily care challenges is lacking. DESIGN: We established an international prospective registry to systemically capture data from parents and physicians caring for patients with MCT8 deficiency. Parent-reported data on complex needs and daily care challenges were extracted. RESULTS: Between July 17, 2018, and May 16, 2022, 51 patients were registered. Difficulties in daily life care were mostly related to feeding and nutritional status (17/33 patients), limited motor skills (12/33 patients), and sleeping (11/33 patients). Dietary advice was provided for 11/36 patients. Two of 32 patients were under care of a cardiologist. Common difficulties in the diagnostic trajectory included late diagnosis (20/35 patients) and visiting a multitude of specialists (15/35 patients). Median diagnostic delay was significantly shorter in patients born in or after 2017 vs before 2017 (8 vs 19 months, P < .0001). CONCLUSIONS: Feeding and sleeping problems and limited motor skills mostly contribute to difficulties in daily care. The majority of patients did not receive professional dietary advice, although being underweight is a key disease feature, strongly linked with poor survival. Despite sudden death being a prominent cause of death, potentially related to the cardiovascular abnormalities frequently observed, patients were hardly seen by cardiologists. These findings can directly improve patient-centered multidisciplinary care and define patient-centered outcome measures for intervention studies in patients with MCT8 deficiency.


Subject(s)
Mental Retardation, X-Linked , Symporters , Humans , Delayed Diagnosis , Monocarboxylic Acid Transporters , Muscle Hypotonia , Muscular Atrophy
3.
J Clin Endocrinol Metab ; 107(3): e1136-e1147, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34679181

ABSTRACT

CONTEXT: Patients with mutations in thyroid hormone transporter MCT8 have developmental delay and chronic thyrotoxicosis associated with being underweight and having cardiovascular dysfunction. OBJECTIVE: Our previous trial showed improvement of key clinical and biochemical features during 1-year treatment with the T3 analogue Triac, but long-term follow-up data are needed. METHODS: In this real-life retrospective cohort study, we investigated the efficacy of Triac in MCT8-deficient patients in 33 sites. The primary endpoint was change in serum T3 concentrations from baseline to last available measurement. Secondary endpoints were changes in other thyroid parameters, anthropometric parameters, heart rate, and biochemical markers of thyroid hormone action. RESULTS: From October 15, 2014 to January 1, 2021, 67 patients (median baseline age 4.6 years; range, 0.5-66) were treated up to 6 years (median 2.2 years; range, 0.2-6.2). Mean T3 concentrations decreased from 4.58 (SD 1.11) to 1.66 (0.69) nmol/L (mean decrease 2.92 nmol/L; 95% CI, 2.61-3.23; P < 0.0001; target 1.4-2.5 nmol/L). Body-weight-for-age exceeded that of untreated historical controls (mean difference 0.72 SD; 95% CI, 0.36-1.09; P = 0.0002). Heart-rate-for-age decreased (mean difference 0.64 SD; 95% CI, 0.29-0.98; P = 0.0005). SHBG concentrations decreased from 245 (99) to 209 (92) nmol/L (mean decrease 36 nmol/L; 95% CI, 16-57; P = 0.0008). Mean creatinine concentrations increased from 32 (11) to 39 (13) µmol/L (mean increase 7 µmol/L; 95% CI, 6-9; P < 0.0001). Mean creatine kinase concentrations did not significantly change. No drug-related severe adverse events were reported. CONCLUSIONS: Key features were sustainably alleviated in patients with MCT8 deficiency across all ages, highlighting the real-life potential of Triac for MCT8 deficiency.


Subject(s)
Mental Retardation, X-Linked/drug therapy , Monocarboxylic Acid Transporters/deficiency , Muscle Hypotonia/drug therapy , Muscular Atrophy/drug therapy , Symporters/deficiency , Triiodothyronine/analogs & derivatives , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , Male , Mental Retardation, X-Linked/blood , Mental Retardation, X-Linked/genetics , Middle Aged , Monocarboxylic Acid Transporters/genetics , Muscle Hypotonia/blood , Muscle Hypotonia/genetics , Muscular Atrophy/blood , Muscular Atrophy/genetics , Mutation , Retrospective Studies , Symporters/genetics , Treatment Outcome , Triiodothyronine/administration & dosage , Triiodothyronine/adverse effects , Triiodothyronine/blood , Young Adult
4.
Thyroid ; 32(3): 326-335, 2022 03.
Article in English | MEDLINE | ID: mdl-34937426

ABSTRACT

Background: A recent genome-wide association study identified the SLC17A4 locus associated with circulating free thyroxine (T4) concentrations. Human SLC17A4, being widely expressed in the gastrointestinal tract, was characterized as a novel triiodothyronine (T3) and T4 transporter. However, apart from the cellular uptake of T3 and T4, transporter characteristics are currently unknown. In this study, we delineated basic transporter characteristics of this novel thyroid hormone (TH) transporter. Methods: We performed a broad range of well-established TH transport studies in COS-1 cells transiently overexpressing SLC17A4. We studied cellular TH uptake in various incubation buffers, TH efflux, and the inhibitory effects of different TH metabolites and known inhibitors of other TH transporters on SLC17A4-mediated TH transport. Finally, we determined the effect of tunicamycin, a pharmacological inhibitor of N-linked glycosylation, and targeted mutations in Asn residues on SLC17A4 function. Results: SLC17A4 induced the cellular uptake of T3 and T4 by ∼4 times, and of reverse (r)T3 by 1.5 times over control cells. The uptake of T4 by SLC17A4 was Na+ and Cl- independent, stimulated by low extracellular pH, and reduced by various iodothyronines and metabolites thereof, particularly those that contain at least three iodine moieties irrespective of the presence of modification at the alanine side chain. None of the classical TH transporter inhibitors studied attenuated SLC17A4-mediated TH transport. SLC17A4 also facilitates the efflux of T3 and T4, and to a lesser extent of 3,3'-diiodothyronine (T2). Immunoblot studies on lysates of transfected cells cultured in absence or presence of tunicamycin indicated that SLC17A4 is subject to N-linked glycosylation. Complementary mutational studies identified Asn66, Asn75, and Asn90, which are located in extracellular loop 1, as primary targets. Conclusions: Our studies show that SLC17A4 facilitates the transport of T3 and T4, and less efficiently rT3 and 3,3'-T2. Further studies should reveal the physiological role of SLC17A4 in TH regulation.


Subject(s)
Genome-Wide Association Study , Thyroxine , Humans , Membrane Transport Proteins , Sodium-Phosphate Cotransporter Proteins, Type I , Thyroid Hormones/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Tunicamycin
5.
Front Endocrinol (Lausanne) ; 12: 723750, 2021.
Article in English | MEDLINE | ID: mdl-34539576

ABSTRACT

Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.


Subject(s)
Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/therapy , Muscle Hypotonia/genetics , Muscle Hypotonia/therapy , Muscular Atrophy/genetics , Muscular Atrophy/therapy , Humans , Mental Retardation, X-Linked/mortality , Mental Retardation, X-Linked/pathology , Monocarboxylic Acid Transporters/genetics , Muscle Hypotonia/mortality , Muscle Hypotonia/pathology , Muscular Atrophy/mortality , Muscular Atrophy/pathology , Phenotype , Signal Transduction/genetics , Symporters/genetics , Therapies, Investigational/methods , Therapies, Investigational/trends
6.
Endocrine ; 71(3): 689-695, 2021 03.
Article in English | MEDLINE | ID: mdl-33650046

ABSTRACT

Defective thyroid hormone transport due to deficiency in thyroid hormone transporter monocarboxylate transporter 8 (MCT8) results in severe neurodevelopmental delay due to cerebral hypothyroidism and in clinical negative sequelae following a chronic thyrotoxic state in peripheral tissues. The life expectancy of patients with MCT8 deficiency is severely impaired. Increased mortality is associated with lack of head control and being underweight at young age. Treatment options are available to alleviate the thyrotoxic state; particularly, treatment with the thyroid hormone analogue triiodothyroacetic acid seems a promising therapy. This review provides an overview of key clinical features and treatment options available and under development for this rare disorder.


Subject(s)
Mental Retardation, X-Linked , Symporters , Humans , Mental Retardation, X-Linked/genetics , Monocarboxylic Acid Transporters/genetics , Muscle Hypotonia/etiology , Muscular Atrophy
7.
J Clin Endocrinol Metab ; 106(2): 539-553, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33141165

ABSTRACT

CONTEXT: Genetic variants in SLC16A2, encoding the thyroid hormone transporter MCT8, can cause intellectual and motor disability and abnormal serum thyroid function tests, known as MCT8 deficiency. The C-terminal domain of MCT8 is poorly conserved, which complicates prediction of the deleteriousness of variants in this region. We studied the functional consequences of 5 novel variants within this domain and their relation to the clinical phenotypes. METHODS: We enrolled male subjects with intellectual disability in whom genetic variants were identified in exon 6 of SLC16A2. The impact of identified variants was evaluated in transiently transfected cell lines and patient-derived fibroblasts. RESULTS: Seven individuals from 5 families harbored potentially deleterious variants affecting the C-terminal domain of MCT8. Two boys with clinical features considered atypical for MCT8 deficiency had a missense variant [c.1724A>G;p.(His575Arg) or c.1796A>G;p.(Asn599Ser)] that did not affect MCT8 function in transfected cells or patient-derived fibroblasts, challenging a causal relationship. Two brothers with classical MCT8 deficiency had a truncating c.1695delT;p.(Val566*) variant that completely inactivated MCT8 in vitro. The 3 other boys had relatively less-severe clinical features and harbored frameshift variants that elongate the MCT8 protein [c.1805delT;p.(Leu602HisfsTer680) and c.del1826-1835;p.(Pro609GlnfsTer676)] and retained ~50% residual activity. Additional truncating variants within transmembrane domain 12 were fully inactivating, whereas those within the intracellular C-terminal tail were tolerated. CONCLUSIONS: Variants affecting the intracellular C-terminal tail of MCT8 are likely benign unless they cause frameshifts that elongate the MCT8 protein. These findings provide clinical guidance in the assessment of the pathogenicity of variants within the C-terminal domain of MCT8.


Subject(s)
Intellectual Disability/pathology , Monocarboxylic Acid Transporters/genetics , Mutation , Phenotype , Symporters/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Intellectual Disability/genetics , Male , Prognosis
8.
Lancet Diabetes Endocrinol ; 8(7): 594-605, 2020 07.
Article in English | MEDLINE | ID: mdl-32559475

ABSTRACT

BACKGROUND: Disordered thyroid hormone transport, due to mutations in the SLC16A2 gene encoding monocarboxylate transporter 8 (MCT8), is characterised by intellectual and motor disability resulting from cerebral hypothyroidism and chronic peripheral thyrotoxicosis. We sought to systematically assess the phenotypic characteristics and natural history of patients with MCT8 deficiency. METHODS: We did an international, multicentre, cohort study, analysing retrospective data from Jan 1, 2003, to Dec 31, 2019, from patients with MCT8 deficiency followed up in 47 hospitals in 22 countries globally. The key inclusion criterion was genetically confirmed MCT8 deficiency. There were no exclusion criteria. Our primary objective was to analyse the overall survival of patients with MCT8 deficiency and document causes of death. We also compared survival between patients who did or did not attain full head control by age 1·5 years and between patients who were or were not underweight by age 1-3 years (defined as a bodyweight-for-age Z score <-2 SDs or <5th percentile according to WHO definition). Other objectives were to assess neurocognitive function and outcomes, and clinical parameters including anthropometric characteristics, biochemical markers, and neuroimaging findings. FINDINGS: Between Oct 14, 2014, and Jan 17, 2020, we enrolled 151 patients with 73 different MCT8 (SLC16A2) mutations. Median age at diagnosis was 24·0 months (IQR 12·0-60·0, range 0·0-744·0). 32 (21%) of 151 patients died; the main causes of mortality in these patients were pulmonary infection (six [19%]) and sudden death (six [19%]). Median overall survival was 35·0 years (95% CI 8·3-61·7). Individuals who did not attain head control by age 1·5 years had an increased risk of death compared with patients who did attain head control (hazard ratio [HR] 3·46, 95% CI 1·76-8·34; log-rank test p=0·0041). Patients who were underweight during age 1-3 years had an increased risk for death compared with patients who were of normal bodyweight at this age (HR 4·71, 95% CI 1·26-17·58, p=0·021). The few motor and cognitive abilities of patients did not improve with age, as evidenced by the absence of significant correlations between biological age and scores on the Gross Motor Function Measure-88 and Bayley Scales of Infant Development III. Tri-iodothyronine concentrations were above the age-specific upper limit in 96 (95%) of 101 patients and free thyroxine concentrations were below the age-specific lower limit in 94 (89%) of 106 patients. 59 (71%) of 83 patients were underweight. 25 (53%) of 47 patients had elevated systolic blood pressure above the 90th percentile, 34 (76%) of 45 patients had premature atrial contractions, and 20 (31%) of 64 had resting tachycardia. The most consistent MRI finding was a global delay in myelination, which occurred in 13 (100%) of 13 patients. INTERPRETATION: Our description of characteristics of MCT8 deficiency in a large patient cohort reveals poor survival with a high prevalence of treatable underlying risk factors, and provides knowledge that might inform clinical management and future evaluation of therapies. FUNDING: Netherlands Organisation for Health Research and Development, and the Sherman Foundation.


Subject(s)
Biomarkers/analysis , Mental Disorders/pathology , Monocarboxylic Acid Transporters/deficiency , Muscular Diseases/pathology , Neurodevelopmental Disorders/pathology , Symporters/deficiency , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Infant , International Agencies , Male , Mental Disorders/etiology , Middle Aged , Monocarboxylic Acid Transporters/genetics , Muscular Diseases/etiology , Mutation , Neurodevelopmental Disorders/etiology , Prognosis , Retrospective Studies , Survival Rate , Symporters/genetics , Young Adult
9.
Endocr Rev ; 41(2)2020 04 01.
Article in English | MEDLINE | ID: mdl-31754699

ABSTRACT

Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).


Subject(s)
Biological Transport/physiology , Membrane Transport Proteins/physiology , Mental Retardation, X-Linked , Monocarboxylic Acid Transporters/physiology , Muscle Hypotonia , Muscular Atrophy , Organic Anion Transporters/physiology , Symporters/physiology , Thyroid Hormones/metabolism , Animals , Humans , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/physiopathology , Mental Retardation, X-Linked/therapy , Monocarboxylic Acid Transporters/deficiency , Monocarboxylic Acid Transporters/genetics , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Hypotonia/physiopathology , Muscle Hypotonia/therapy , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/physiopathology , Muscular Atrophy/therapy , Organic Anion Transporters/deficiency , Organic Anion Transporters/genetics , Symporters/deficiency , Symporters/genetics , Thyroid Hormones/therapeutic use
10.
Thyroid ; 29(10): 1499-1510, 2019 10.
Article in English | MEDLINE | ID: mdl-31436139

ABSTRACT

Background: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause MCT8 deficiency, characterized by severe intellectual and motor disability and abnormal serum thyroid function tests. Various Mct8 knock-out mouse models as well as mct8 knock-out and knockdown zebrafish models are used as a disease model for MCT8 deficiency. Although important for model eligibility, little is known about the functional characteristics of the MCT8 orthologues in these species. Therefore, we here compared the functional characteristics of mouse (mm) MCT8 and zebrafish (dr) Mct8 to human (hs) MCT8. Methods: We performed extensive transport studies in COS-1 and JEG-3 cells transiently transfected with hsMCT8, drMct8, and mmMCT8. Protein expression levels and subcellular localization were assessed by immunoblotting, surface biotinylation, and immunocytochemistry. Sequence alignment and structural modeling were used to interpret functional differences between the orthologues. Results: hsMCT8, drMct8, and mmMCT8 all facilitated the uptake and efflux of 3,3'-diiodothyronine (3,3'-T2), rT3, triiodothyronine (T3), and thyroxine (T4), although the initial uptake rates of drMct8 were 1.5-4.0-fold higher than for hsMCT8 and mmMCT8. drMct8 exhibited 3-50-fold lower apparent IC50 values than hsMCT8 and mmMCT8 for all tested substrates, and substrate preference of drMct8 (3,3'-T2, T3 > T4 > rT3) differed from hsMCT8 and mmMCT8 (T3 > T4 > rT3, 3,3'-T2). Compared with hsMCT8 and mmMCT8, cis-inhibition studies showed that T3 uptake by drMct8 was inhibited at a lower concentration and by a broader spectrum of TH metabolites. Total and cell surface expression levels of drMct8 and hsMCT8 were equal and both significantly exceeded those of mmMCT8. Structural modeling located most non-conserved residues outside the substrate pore, except for H192 in hsMCT8, which is replaced by a glutamine in drMct8. However, a H192Q substituent of hsMCT8 did not alter its transporter characteristics. Conclusion: Our studies substantiate the eligibility of mice and zebrafish models for human MCT8 deficiency. However, differences in the intrinsic transporter properties of MCT8 orthologues may exist, which should be realized when comparing MCT8 deficiency in different in vivo models. Moreover, our findings may indicate that the protein domains outside the substrate channel may play a role in substrate selection and protein stability.


Subject(s)
Monocarboxylic Acid Transporters/metabolism , Symporters/metabolism , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Diiodothyronines/metabolism , Disease Models, Animal , Gene Knockdown Techniques , Humans , Immunoblotting , Immunohistochemistry , In Vitro Techniques , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/metabolism , Mice , Mice, Knockout , Models, Molecular , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Sequence Alignment , Thyroxine/metabolism , Triiodothyronine/metabolism , Triiodothyronine, Reverse/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...